

HOW PRIMARY SCHOOL TEACHERS SUCCEED IN DESIGNING LESSONS TO TEACH STUDENTS 21ST CENTURY SKILLS

Dr. paed. Dace Namsone Mag. math. Līga Čakāne

The Interdisciplinary Center for Educational Innovation of the University of Latvia 21.-25.08.2017

ESERA 2017 Conference Dublin City University, Dublin, Ireland. 21st - 25th August 2017

Deep learning & 21st century skills

- Latvia: changes in curriculum for developing 21st century skills
- 21st century skills can be acquired through deep learning approach (Fullan & Langworthy, 2014)

Problem: Gap between policy & practice

- Lesson observations in Latvia reveal a gap between policy and actual teaching approaches
- (France, Namsone & Čakāne, 2015; Volkinsteine & Namsone, 2016)
- There is a need for additional approaches to help teachers implement teaching of 21st century skills

education policy regulations

actual teaching approaches in schools

Learning philosophy

Proposed model

Continuous lesson based professional development

The research questions

- What is the cognitive depth of a teacher developed lesson for teaching 21st century skills?
- Are there differences between school teams?
- What do teachers think about their capability of teaching these skills to their students?
- How do expert-coaches evaluate teacher performance teaching these skills in the lesson?

METHOD

A+1.1

- Research included teams from 13 schools.
- Each team two primary school teachers and a school leadership representative.
- Eight expert-coaches from the University of Latvia
- Expert-coaches experience in lesson analyses.

- 55 primary teachers developed lesson plans.
- 26 lessons observed during the workshop used.
- Two expert-coaches each lesson.
- 0-4 level rubrics for every criteria.
- Individual evaluations based on classroom observations and transcripts.
- The level of the cognitive demand rubric according to SOLO taxonomy.

A rubric for criteria «metacognitive activity»

L	Description of the level					
0	Lack of necessary preconditions for learning awareness					
1	Learning goals are not explained to students and related performance criteria or reflection is absent					
2	Learning activity ends with reflection; knowledge and skills are clearly defined and their usage is discussed					
3	and students must think about the way they learn, reason and remember					
4	and students must evaluate different strategies, their efficiency (the way they learn, reason and remember) and choose the most appropriate one					

RESULTS

ムトハン

Cognitive demand:

- 0 level 2% lessons
- 1st level 29% lessons
- 2nd level 31% lessons
- 3rd level 38% lessons

Metacognitive activity:

- 1st level 67% lessons
- 2nd level 19% lessons
- 3rd level 12% lessons
- 4th level 2% lessons

- 2 school teams reached 100%
- 2 teams around 70% on cognitive demand level 3
- 1 school team stayed on level 1

Metacognitive activity:

- 1 school team reached level 4
- 4 teams reached level 3
- 5 teams stayed on 1 level

Teachers responds (% of the respondents)

Criteria	Statement Questionnaire	0	1	2	3
Cognitive demand	Improve student HOCS	0	35	60	5
Metacogni tive activity	Teach students think about thinking and learning	0	40	55	5

Main findings

- Teachers acquired experience in developing essential 21st century skills in students
- Gradual improvement of skills: giving feedback to students, communicating learning goals and developing student meta-cognitive skills
- Depth of cognitive activity and complexity in 38% of the developed samples reaches level 3 (on the scale 0-4)

- The gap between the findings of the survey and experts evaluations.
- Teachers tend to focus on the subject content; rarerly fail to mention the skills among lesson outcomes.
- Skills are not taught on a conscious level.

For future research

 The significant differences between schools cannot be explained only by differences in teacher professional expertise; school leadership has an impact on performance of the school team.

• Expressions of this impact will be subject to future research.

Thank you for your attention!

Acknowledgment

• The research is supported by National Science Research programm project.

For more information please contact us:

<u>dace.namsone@lu.lv</u> <u>liga.cakane@lu.lv</u>

