Mehānika	$v_{v i d}=\frac{l}{\Delta t}$	$a_{x}=\frac{v_{x}-v_{0 x}}{\Delta t}$	$x=x_{0}+$	${ }_{x} t+\frac{a_{x} t^{2}}{2}$	Apzīmējumi Absolūtā temperatūra - T Apgaismojums - E Ātrums - v Berzes koeficients - μ Celš̌ - l Blīvums - ρ Darbs - A Dielektriskā caurlaidība - ε Difrakcijas režga periods - d Elastības modulis - E Elektriskā kapacitāte - C Elektriskā lauka intensitāte - E Elektriskais lādiņ̌̌ - q Elektriskās pretestības termiskais koeficients - α Elektrodzinējspēks - ε Elektrokīmiskais ekvivalents - k Elementa kārtas skaitlis - Z Energija - W, E Fokusa attālums - F Frekvence - v Gaisa relatīvais mitrums - r Gaismas plūsma - Φ Gaismas stiprums - I Iekšējā energija - U Iekšējā pretestība - r Impulss - p Induktīvā pretestība - X_{L} Induktivitāte - L İpatnējā pretestība - ρ Īpatnējā siltumietilpība - c Īpatnējais iztvaikošanas siltums - L Īpatnējais kušanas siltums - λ Īpatnējais sadegšanas siltums - q Jauda - P Jaudas koeficients $-\cos \varphi$ Kapacitīvā pretestība - X_{C} Kinētiskā enerǵija - W_{k} Koordināta - x Leņkiskā frekvence - ω Lenkiskais ātrums - ω Lietderības koeficients - η Lineārais palielinājums - Γ Lineārās izplešanās termiskais koeficients - α Magnētiskā indukcija - B Magnētiskā plūsma - Φ Masas skaitlis - A Mehāniskais spriegums - σ Masa - m Molmasa - M Neitronu skaits - N Optiskais stiprums - D Paātrinājums - a Pagrieziena lenkis - φ Pārvietojums - s Periods - T Potenciālā enerǵija - W_{p} Potenciāls - φ Pretestība - R Relatīvais pagarinājums - ε Siltuma daudzums - Q Spēka moments - M Spēka plecs - l Spēks - F Spiediens - p Spriegums - U Stinguma koeficients - k Strāvas stiprums - I Telpas leņkis - Ω Tilpums - V Transformācijas koeficients - k Vielas daudzums - n Vilṇa garums - λ Virsmas spraiguma						
$v^{2}-v_{0}^{2}=2 a s$	$\omega=\frac{\varphi}{\Delta t}$	$v=\frac{1}{T}$	$v=\frac{2 \pi R}{T}$	$v=\omega R$							
$a=\frac{v^{2}}{R}=\omega^{2} R$	$a=\frac{F}{m}$	$F=G \frac{m_{1} m_{2}}{R^{2}}$	$F=m g$	$F_{e}=-k x$							
$F_{b}=\mu F_{R}$	$F_{A}=\rho_{s k} g V_{k}$	$p=\rho g h$	$M=F l$	$p=m v$							
$A=F s \cos \alpha$	$P=\frac{A}{\Delta t}$	$\eta=\frac{A_{l}}{A_{p}}$	$W_{k}=\frac{m v^{2}}{2}$	$W_{p}=m g h$							
$W_{p}=\frac{k x^{2}}{2}$	$x=x_{m} \cos \omega t$	$T=2 \pi \sqrt{\frac{l}{g}}$	$T=2 \pi \sqrt{\frac{m}{k}}$	$\lambda=v T$							
Molekulārfizika Termodinamika	$M=m_{0} N_{A}$	$n=\frac{N}{N_{A}}=\frac{m}{M}$	$\rho=\frac{m}{V}$	$p=\frac{1}{3} \frac{N}{V} m_{0} \overline{v^{2}}$							
$p=\frac{N}{V} k T$	$\bar{W}_{k}=\frac{3}{2} k T$	$\frac{p V}{T}=$ const	$p V=\frac{m}{M} R T$	$R=k N_{A}$							
$U=\frac{3}{2} \frac{m}{M} R T$	$T=t+273$	$A=p \Delta V$	$Q=\Delta U+A_{g}$	$\eta_{\text {max }}=\frac{T_{1}-T_{2}}{T_{1}}$							
$\eta=\frac{A}{Q}$	$Q=c m \Delta t$	$Q=\lambda m$	$Q=L m$	$Q=q m$							
$\sigma=\frac{F}{l}$	$l=l_{0}(1+\alpha t)$	$\varepsilon=\frac{\Delta l}{l_{0}}$	$\sigma=\frac{F}{S}$	$r=\frac{p}{p_{0}}=\frac{\rho}{\rho_{0}}$							
Elektromagnētisms	$F=k \frac{q_{1} q_{2}}{\varepsilon R^{2}}$	$E=\frac{F}{q}$	$A=q E d$	$\varphi=\frac{W_{p}}{q}$							
$U=\frac{A}{q}$	$E=\frac{U}{\Delta d}$	$C=\frac{q}{U}$	$C=\frac{\varepsilon \varepsilon_{0} S}{d}$	$W=\frac{C U^{2}}{2}$							
$R=\rho \frac{l}{S}$	$R=R_{0}(1+\alpha t)$	$I=\frac{q}{\Delta t}$	$I=\frac{U}{R}$	$R=R_{1}+R_{2}$							
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$\mathcal{E}=\frac{A_{\overline{a r} r} r}{q}$	$I=\frac{\varepsilon}{R+r}$	$A=I U \Delta t$	$P=I U$							
$Q=I^{2} R \Delta t$	$m=k I \Delta t$	$B=\frac{M_{m}}{I S}$	$F_{A}=B I l \sin \alpha$	$F_{L}=B q v \sin \alpha$							
$\Phi=B S \cos \alpha$	$\mathcal{E}=B l v \sin \alpha$	$\mathcal{E}=-\frac{\Delta \Phi}{\Delta t}$	$L=\frac{\Phi}{I}$	$\varepsilon_{p}=-L \frac{\Delta I}{\Delta t}$							
$W=\frac{L I^{2}}{2}$	$T=2 \pi \sqrt{L C}$	$i=I_{m} \sin \omega t$	$I=\frac{I_{m}}{\sqrt{2}}$	$U=\frac{U_{m}}{\sqrt{2}}$							
$X_{L}=\omega L$	$X_{C}=\frac{1}{\omega C}$	$\cos \varphi=\frac{R}{Z}$	$P=I U \cos \varphi$	$k=\frac{N_{1}}{N_{2}}=\frac{U_{1}}{U_{2}}$							
$\begin{gathered} \text { Optika } \\ \text { Atomfizika } \end{gathered}$	$\frac{\sin \alpha}{\sin \gamma}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}=n$	$D=\frac{1}{F}=\frac{1}{d}+\frac{1}{f}$	$\Gamma=\frac{f}{d}=\frac{H}{h}$	$\Phi=\frac{W}{\Delta t}$							
$I=\frac{\Phi}{\Omega}$	$E=\frac{\Phi}{S}$	$E=\frac{I}{R^{2}} \cos \alpha$	$d \sin \varphi=k \lambda$	$E=h \nu$							
$h v=A_{i}+E_{k}$	$h \nu=E_{m}-E_{n}$	$E=m c^{2}$	$A=Z+N$	$N=N_{0} 2^{-\frac{t}{T}}$							

FIZIKĀLĀS KONSTANTES APRĒĶINIEM

Atommasas vien̄̄ba	$1 \mathrm{u}=1,7 \cdot 10^{-27} \mathrm{~kg}$
Avogadro skaitlis	$N_{A}=6,0 \cdot 10^{23} \mathrm{~mol}^{-1}$
Bolcmaña konstante	$k=1,4 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$
Elektriskā konstante	$\varepsilon_{0}=8,9 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$
Elektrona lādiňš	$e=1,6 \cdot 10^{-19} \mathrm{C}$
Elektrona miera masa	$m_{e}=9,1 \cdot 10^{-31} \mathrm{~kg}$
Elektronvolts	$1 \mathrm{eV}=1,6 \cdot 10^{-19} \mathrm{~J}$
Gaismas ātrums vakuumā	$c=3,0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
Gravitācijas konstante	$G=6,7 \cdot 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$
Kulona likuma konstante (k)	$1 / 4 \pi \varepsilon_{0}=9,0 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Magnētiskā konstante	$\mu_{0}=1,3 \cdot 10^{-6} \mathrm{H} / \mathrm{m}$
Molāā gāzu konstante	$R=8,3 \cdot \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
Neitrona miera masa	$m_{n}=1,7 \cdot 10^{-27} \mathrm{~kg}$
Normāls atmosferas spiediens	$p=1,0 \cdot 10^{5} \mathrm{~Pa}$
Planka konstante	$h=6,6 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Protona miera masa	$m_{p}=1,7 \cdot 10^{-27} \mathrm{~kg}$

ASTRONOMISKĀS KONSTANTES APRĒĶINIEM

Vidējais brīvās krišanas paātrinājums Zemes virsmas tuvumā	$9,8 \mathrm{~m} / \mathrm{s}^{2}$
Zemes rādiuss	$6,4 \cdot 10^{6} \mathrm{~m}$
Zemes masa	$6,0 \cdot 10^{24} \mathrm{~kg}$
Zemes orbītas rādiuss	$1,5 \cdot 10^{11} \mathrm{~m}$
Pirmais kosmiskais ātrums	$7,9 \mathrm{~km} / \mathrm{s}$
Otrais kosmiskais ātrums	$11,2 \mathrm{~km} / \mathrm{s}$
Trešais kosmiskais ātrums	$16,7 \mathrm{~km} / \mathrm{s}$
Saules rādiuss	$7,0 \cdot 10^{8} \mathrm{~m}$
Saules masa	$2,0 \cdot 10^{30} \mathrm{~kg}$
Saules konstante	$1,4 \mathrm{~kW} / \mathrm{m}^{2}$
Mēness rādiuss	$1,7 \cdot 10^{6} \mathrm{~m}$
Mēness masa	$7,4 \cdot 10^{22} \mathrm{~kg}$
Mēness orb̄̄tas rādiuss	$3,8 \cdot 10^{8} \mathrm{~m}$
Parseks (pc)	$3,1 \cdot 10^{16} \mathrm{~m}$
Gaismas gads (ly)	$9,5 \cdot 10^{15} \mathrm{~m}$

PRIEDĒKL̦I MĒRVIENĪBU DAUDZKĀRTN̦U UN DAL̦VIENĪBU NOSAUKUMU VEIDOŠANAI

Pakāpes rādītājs	Priedēklis	Simbols	Pakāpes rādītājs	Priedēklis	Simbols
10^{12}	tera	T	10^{-1}	deci	d
10^{9}	giga	G	10^{-2}	centi	c
10^{6}	mega	M	10^{-3}	mili	m
10^{3}	kilo	k	10^{-6}	mikro	μ
10^{2}	hekto	h	10^{-9}	nano	n
10^{1}	deka	da	10^{-12}	piko	p

ELEKTROMAGNĒTISKO VIL̦N̦U SKALA

Avoti: http://www.astro.princeton.edu/; http://physics.nist.gov/cuu/Units/rules.html; http://www.bipm.org/en/si/si_brochure/.

